10 References
10.1 Works cited
Abdi, H., & Valentin, D. (2007) Multiple correspondence analysis, in N. Salkind (ed.) Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage: 651–657.
Adams, B. (2003) Where does computational media aesthetics fit?, IEEE Multimedia 10 (2): 18–27. https://doi.org/10.1109/MMUL.2003.1195158
Adobe (2021) Visually fading and changing amplitude (16 May 2021). https://helpx.adobe.com/uk/audition/using/visually-fading-changing-amplitude.html
Akande, L. (2020) Film education pedagogy in Nigeria: a nation-specific approach to a non-Western university curriculum, Film Education Journal 3 (1): 1–12. https://doi.org/10.14324/FEJ.03.1.01
Aldiss, B. W. (1973) Billion Year Spree: The True History of Science Fiction. London: Weidenfeld & Nicholson.
Allington, D., Brouillette, S., & Golumbia, D. (2016) Neoliberal tools (and archives): a political history of digital humanities, Los Angeles Review of Books. https://lareviewofbooks.org/article/neoliberal-tools-archives-political-history-digital-humanities/
Altman, D. G., & Bland, J. M. (1994) Statistics notes: quartiles, quintiles, centiles, and other quantiles, BMJ 309 (6960): 996–996. https://doi.org/10.1136/bmj.309.6960.996
Altman, R. (2009) Whither film studies (in a post-film studies world)?, Cinema Journal 49 (1): 131–135. https://doi.org/10.1353/cj.0.0160
Álvarez, F., Sánchez, F., Hernández-Peñaloza, G., Jiménez, D., Menéndez, J. M., & Cisneros, G. (2019) On the influence of low-level visual features in film classification, PLOS ONE 14 (2): e0211406. https://doi.org/10.1371/journal.pone.0211406
Alvila, R. (2014) A Unified Complexity Theory. https://www.academia.edu/7950283/A_Unified_Complexity_Theory
Anderson, J. (1996) The Reality of Illusion: An Ecological Approach to Cognitive Film Theory. Carbondale, IL: Southern Illinois University Press.
Arnold, T., & Tilton, L. (2019) Distant viewing: analyzing large visual corpora, Digital Scholarship in the Humanities 34 (Supplement_1): i3–i16. https://doi.org/10.1093/llc/fqz013
Arnold, T., & Tilton, L. (2020) Distant Viewing Toolkit: a Python package for the analysis of visual culture, Journal of Open Source Software 5 (45): 1–6. https://doi.org/10.21105/joss.01800
Aubert, O., & Prié, Y. (2005) Advene: active reading through hypervideo, Proceedings of the Sixteenth ACM Conference on Hypertext and Hypermedia - HYPERTEXT ’05 (2005) : 235–244. https://doi.org/10.1145/1083356.1083405
Bae, G., & Kim, H. (2019) The impact of movie titles on box office success, Journal of Business Research 103: 100–109. https://doi.org/10.1016/j.jbusres.2019.06.023
Baird, R. (2000) The startle effect: implications for spectator cognition and media theory, Film Quarterly 53 (3): 12–24. https://doi.org/10.2307/1213732
Bakker, A., & Gravemeijer, K. P. E. (2004) Learning to reason about distribution, in D. Ben-Zvi & J. Garfield (eds.) The Challenge of Developing Statistical Literacy, Reasoning, and Thinking. Dordrecht: Springer Netherlands: 147–168. https://doi.org/10.1007/1-4020-2278-6_7
Barr, C. (1983) Blackmail: silent and sound, Sight and Sound 52 (2): 122–126.
Baveye, Y., Chamaret, C., Dellandrea, E., & Chen, L. (2018) Affective video content analysis: a multidisciplinary insight, IEEE Transactions on Affective Computing 9 (4): 396–409. https://doi.org/10.1109/TAFFC.2017.2661284
Baxter, M. (2014) Notes on Cinemetric Data Analysis. http://www.cinemetrics.lv/dev/Cinemetrics_Book_Baxter.pdf
Baxter, M., Khitrova, D., & Tsivian, Y. (2017) Exploring cutting structure in film, with applications to the films of D. W. Griffith, Mack Sennett, and Charlie Chaplin, Digital Scholarship in the Humanities 32 (1): 1–16. https://doi.org/10.1093/llc/fqv035
Bellantoni, P. (2005) If It’s Purple, Someone’s Gonna Die: The Power of Color in Visual Storytelling. Burlington, MA: Focal Press.
Bender, S., & Sung, B. (2020) Data-driven creativity for screen production students: developing and testing learning materials involving audience biometrics, Digital Creativity 31 (2): 98–113. https://doi.org/10.1080/14626268.2020.1767654
Benini, S., Savardi, M., Balint, K., Kovács, A. B., & Signoroni, A. (2022) On the influence of shot scale on film mood and narrative engagement in film viewers, IEEE Transactions on Affective Computing: 592–603. https://doi.org/10.1109/TAFFC.2019.2939251
Benini, S., Svanera, M., Adami, N., Leonardi, R., & Kovács, A. B. (2016) Shot scale distribution in art films, Multimedia Tools and Applications 75 (23): 16499–16527. https://doi.org/10.1007/s11042-016-3339-9
Bhardwaj, N. (2020) Shadows of stained glass: an analytical look at animated horror, Journal of Geek Studies 7 (2): 61–78.
Birett, H. (1962) Filmanalyse, Filmstudio Kinematographie 1. https://kinematographie.de/KINEMA.HTM#fa
Birett, H. (1988) Alte filme: filmalter und filmstil. Statistische analyse von stummfilmen, in E. Ledig (ed.) Der Stummfilm: Konstruktion und Rekonstruktion. München: diskurs Film: 69–87.
Birett, H. (1993) Motion pictures and statistics, in H. Keqi, B. Hermann, & L. Renzhi (eds.) Proceedings of the International Conference on Texts and Language Research, Xi’an, 29–31 March 1989. Xi’an: Xi’an Jiaotong University Press: 64–69.
Birnbaum, D. J., & Langmead, A. (2017) Task-driven programming pedagogy in the digital humanities, in S. B. Fee, A. M. Holland-Minkley, & T. E. Lombardi (eds.) New Directions for Computing Education. Cham: Springer International Publishing: 63–85.
Bordwell, D. (2002) Intensified continuity visual style in contemporary American film, Film Quarterly 55 (3): 16–28. https://doi.org/10.1525/fq.2002.55.3.16
Bordwell, D. (2005a) Figures Traced in Light: On Cinematic Staging. Berkeley, CA: University of California Press.
Bordwell, D. (2005b) Foreword, in J. D. Anderson & B. Fisher Anderson (eds.) Moving Image Theory: Ecological Considerations. Carbondale, IL: Southern Illinois University Press: ix–xii.
Bordwell, D. (2012) The viewer’s share: models of mind in explaining film. http://www.davidbordwell.net/essays/viewersshare.php
Bordwell, D., & Carroll, N. (1996) Introduction, in Bordwell David & N. Carroll (eds.) Post-theory: Reconstructing Film Studies. Madison, WI: University of Wisconsin Press: xii–xvii.
British Academy (2012) Society Counts: Quantitative Skills in the Social Sciences and the Humanities. https://www.thebritishacademy.ac.uk/publications/quantitative-skills-society-counts-social-sciences-humanities/
British Film Institute (2011) Research and Policymaking for Film – A Symposium, 26 October 2011: Report of the Day. http://www.bfi.org.uk/sites/bfi.org.uk/files/downloads/bfi-research-and-policymaking-for-film-symposium-2011-10.pdf
Brownie, B. (2016) The Failures of Audio Described Striptease: How visually Impaired Viewers are Deprived Opportunities for Voyeurism. Christ Church University, Canterbury, United Kingdom.
Buckland, W. (2006) Directed by Steven Spielberg: Poetics of the Contemporary Hollywood Blockbuster. London: Continuum.
Buckland, W., & Elsaesser, T. (2002) Studying Contemporary American Film: A Guide to Movie Analysis. London.
Burdick, A., Drucker, J., Lunenfeld, P., Presner, T., & Schnapp, J. (2012) Digital Humanities. Cambridge, MA: MIT Press.
Burghardt, M., Heftberger, A., Pause, J., Walkowski, N.-O., & Zeppelzauer, M. (2020) Film and video analysis in the digital humanities – an interdisciplinary dialog, Digital Humanities Quarterly 14 (4). http://www.digitalhumanities.org/dhq/vol/14/4/000532/000532.html
Burghardt, M., Kao, M., & Walkowski, N.-O. (2018) Scalable MovieBarcodes – an exploratory interface for the analysis of movies, IEEE VIS Workshop on Visualization for the Digital Humanities (2018). https://www.researchgate.net/publication/331908023_Scalable_MovieBarcodes_-_An_Exploratory_Interface_for_the_Analysis_of_Movies
Burghardt, M., Kao, M., & Wolff, C. (2016) Beyond shot lengths – using language data and color information as additional parameters for quantitative movie analysis, Digital Humanities 2016: Conference Abstracts (2016) : 753–755.
Burnett, C. (2008) A new look at the concept of style in film: the origins and development of the problem-solution model, New Review of Film and Television Studies 6 (2): 127–149. https://doi.org/10.1080/17400300802098289
Byszuk, J. (2020) The voices of Doctor Who – how stylometry can be useful in revealing new information about TV series, DHQ: Digital Humanities Quarterly 14 (4). http://www.digitalhumanities.org/dhq/vol/14/4/000499/000499.html
Carroll, N. (1998) Film form: an argument for a functional theory of style in the individual film, Style 32 (3): 385–401.
Carroll, N. (2003) Engaging the Moving Image. New Haven, CT: Yale University Press.
Chen, I.-P., Wu, F.-Y., & Lin, C.-H. (2012) Characteristic color use in different film genres, Empirical Studies of the Arts 30 (1): 39–57. https://doi.org/10.2190/EM.30.1.e
Chen, T. C.-T. (2016) Sound design, Journal of Chinese Cinemas 10 (1): 34–37. https://doi.org/10.1080/17508061.2016.1142729
Clayton, A., & Klevan, A. (2011) Introduction: the language and style of film criticism, in A. Clayton & A. Klevan (eds.) The Language and Style of Film Criticism. Abingdon: Routledge: 1–26.
Cliff, N. (1993) Dominance statistics: ordinal analyses to answer ordinal questions, Psychological Bulletin 114 (3): 494–509. https://doi.org/10.1037/0033-2909.114.3.494
Cliff, N. (1996) Ordinal Methods for Behavioral Data Analysis. Mahwah, NJ: Lawrence Erlbaum Associates.
Cortopassi, K. A. (2006) Automated and Robust Measurement of Signal Features. https://web.archive.org/web/20150428060121/http://www.birds.cornell.edu/brp/research/algorithm/automated-and-robust-measurement-of-signal-features
Cutting, J. E. (2016) The evolution of pace in popular movies, Cognitive Research: Principles and Implications 1 (1): 30. https://doi.org/10.1186/s41235-016-0029-0
Cutting, J. E. (2021) Movies on Our Minds: The Evolution of Cinematic Engagement. Oxford: Oxford University Press.
Cutting, J. E., DeLong, J. E., & Brunick, K. L. (2018) Temporal fractals in movies and mind, Cognitive Research: Principles and Implications 3 (1): 8. https://doi.org/10.1186/s41235-018-0091-x
Cutting, J. E., DeLong, J. E., & Nothelfer, C. E. (2010) Attention and the evolution of Hollywood film, Psychological Science 21 (3): 432–439. https://doi.org/10.1177/0956797610361679
Da, N. Z. (2019) The computational case against computational literary studies, Critical Inquiry 45 (3): 601–639. https://doi.org/10.1086/702594
Davies, M. M., Berry, C., & Clifford, B. (1985) Unkindest cuts? Some effects of picture editing on recall of television news information, Journal of Educational Television 11 (2): 85–98. https://doi.org/10.1080/0260741850110202
Del Vecchio, M., Kharlamov, A., Parry, G., & Pogrebna, G. (2020) Improving productivity in Hollywood with data science: using emotional arcs of movies to drive product and service innovation in entertainment industries, Journal of the Operational Research Society 72 (5): 1110–1137. https://doi.org/10.1080/01605682.2019.1705194
Delaney, H. D., & Vargha, A. (2002) Comparing several robust tests of stochastic equality with ordinally scaled variables and small to moderate sized samples, Psychological Methods 7 (4): 485–503. https://doi.org/10.1037/1082-989X.7.4.485
Deldjoo, Y., Schedl, M., Cremonesi, P., & Pasi, G. (2020) Recommender systems leveraging multimedia content, ACM Computing Surveys 53 (5): 1–38. https://doi.org/10.1145/3407190
Detenber, B. H., Han, J., & Lang, A. (2021) The influence of form and presentation attributes of traditional media on emotion, in K. Döveling & E. A. Konijn (eds.) Routledge International Handbook of Emotions and Media, 2nd edn. Abingdon: Routledge: 147–163.
Donoho, D. (2017) 50 years of data science, Journal of Computational and Graphical Statistics 26 (4): 745–766. https://doi.org/10.1080/10618600.2017.1384734
Dorai, C., & Venkatesh, S. (2002) Bridging the semantic gap in content management systems, in C. Dorai & S. Venkatesh (eds.) Media Computing: Computational Media Aesthetics. Boston, MA: Springer: 1–9.
Dreissen, Y. E. M., Bakker, M. J., Koelman, J. H. T. M., & Tijssen, M. A. J. (2012) Exaggerated startle reactions, Clinical Neurophysiology 123 (1): 34–44. https://doi.org/10.1016/j.clinph.2011.09.022
Ellis, J. C., & MaCann, R. D. (1982) Introduction, in J. C. Ellis & R. D. MaCann (eds.) Cinema Examined: Selections from Cinema Journal. New York, NY: E. P. Dutton: vii–xiiii.
Everitt, B., & Hothorn, T. (2011) An Introduction to Applied Multivariate Analysis with R. New York, NY: Springer.
Everitt, B., & Skrondal, A. (2010) The Cambridge Dictionary of Statistics, 4th edn. Cambridge: Cambridge University Press.
Fairchild, M. D. (2013) Color Appearance Models, 3rd edn. Chichester: John Wiley & Sons.
Fish, S. (2019) If you count it, they will come, New York University Journal of Law and Liberty 12 (2): 333–351.
Flaxman, G. (2012) Out of field, Angelaki 17 (4): 119–137. https://doi.org/10.1080/0969725x.2012.747333
Flueckiger, B. (2017) A digital humanities approach to film colors, The Moving Image 17 (2): 71–94.
Flueckiger, B., & Halter, G. (2020) Methods and advanced tools for the analysis of film colors in digital humanities, DHQ: Digital Humanities Quarterly 14 (4). http://www.digitalhumanities.org/dhq/vol/14/4/000500/000500.html
Fujita, K. (1989) Shot length distributions in educational TV programs, Bulletin of the National Institute of Multimedia Education 2: 102–116.
Gawinecki, M., Szmyd, W., Żuchowicz, U., & Walas, M. (2021) What makes a good movie recommendation? Feature selection for content-based filtering, in N. Reyes, R. Connor, N. Kriege, D. Kazempour, I. Bartolini, E. Schubert, & J.-J. Chen (eds.) Similarity Search and Applications. Cham: Springer International Publishing: 280–294.
Gong, Y., & Xu, W. (2007) Machine Learning for Multimedia Content Analysis. New York, NY: Springer.
Goodwin, M. M. (2008) The STFT, sinusoidal models, and speech modification, in J. Benesty, M. M. Sondhi, & Y. Huang (eds.) Springer Handbook of Speech Processing. Berlin: Springer: 229–258.
Gray, J. (2010) Show Sold Separately: Promos, Spoilers, and Other Media Paratexs. New York, NY: New York University Press.
Greetham, D. (2012) The resistance to digital humanities, in M. K. Gold (ed.) Debates in the Digital Humanities. Minneapolis, MN: University of Minnesota Press: 438–451.
Grieveson, L., & Wasson, H. (2008) The academy and motion pictures, in L. Grieveson & H. Wasson (eds.) Inventing Film Studies. Durham, NC: Duke University Press: xi–xxxii.
Grodal, T. (1997) Moving Pictures: A New Theory of Film Genres, Feeling, and Cognition. Oxford.
Grodal, T. (1999) Emotions, cognition, and narrative patterns in film, in C. Plantinga & G. M. Smith (eds.) Passionate Views: Film, Cognition, and Emotion. Baltimore: Johns Hopkins University Press: 127–145.
Grodal, T. (2005) Frozen flows in von Trier’s oeuvre, in T. Grodal, B. Larsen, & I. T. Laursen (eds.) Visual Authorship: Creativity and Intentionality in Media. Copenhagen: Museum Tusculanums Press: 129–167.
Grodal, T., Larsen, B., & Laursen, I. T. (2005) Introduction, in T. Grodal, B. Larsen, & I. T. Laursen (eds.) Visual Authorship: Creativity and Intentionality in Media. Copenhagen: Museum Tusculanums Press: 7–14.
Grzybek, P., & Koch, V. (2012) Shot length: random or rigid, choice or chance? An analysis of Lev Kulešov’s Po zakonu [By the Law], in E. W. B. Hess-Lüttich (ed.) Sign culture. Zeichen kultur. Würzburg: Königshausen & Neumann: 169–188.
Guehria, S., Belleili, H., Azizi, N., & Belhaouari, S. B. (2021) ‘One vs all’ classifier analysis for multi-label movie genre classification using document embedding, in A. Abraham, V. Piuri, N. Gandhi, P. Siarry, A. Kaklauskas, & A. Madureira (eds.) Intelligent Systems Design and Applications. Cham: Springer International Publishing: 478–487.
Halter, G., Ballester‐Ripoll, R., Flueckiger, B., & Pajarola, R. (2019) VIAN: a visual annotation tool for film analysis, Computer Graphics Forum 38 (3): 119–129. https://doi.org/10.1111/cgf.13676
Hanjalic, A., & Li-Qun Xu (2005) Affective video content representation and modeling, IEEE Transactions on Multimedia 7 (1): 143–154. https://doi.org/10.1109/TMM.2004.840618
Hanjalic, A., Sebe, N., & Chang, E. (2006) Multimedia content analysis, management and retrieval: trends and challenges, in E. Y. Chang, A. Hanjalic, & N. Sebe (eds.) Proceedings Volume 6073, Multimedia Content Analysis, Management, and Retrieval 2006 (17 January 2006). https://doi.org/10.1117/12.673788
Hasler, D., & Suesstrunk, S. E. (2003) Measuring colorfulness in natural images, in B. E. Rogowitz & T. N. Pappas (eds.) Proc. IS&T/SPIE Electronic Imaging 2003: Human Vision and Electronic Imaging VIII (17 June 2003) 5007. https://doi.org/10.1117/12.477378
Heft, H., & Blondal, R. (1987) The influence of cutting rate on the evaluation of affective content of film, Empirical Studies of the Arts 5 (1): 1–14. https://doi.org/10.2190/HDKG-UBXY-XKFB-Y7EE
Heftberger, A. (2018) Digital Humanities and Film Studies: Visualising Dziga Vertov’s Work. Cham: Springer.
Heip, C. H. R., Herman, P. M. J., & Soetaert, K. (1998) Indices of diversity and evenness, Oceanis 24 (4): 61–87.
Henry, R. C. (2002) Just-noticeable differences in atmospheric haze, Journal of the Air & Waste Management Association 52 (10): 1238–1243. https://doi.org/10.1080/10473289.2002.10470854
Hesham, M., Hani, B., Fouad, N., & Amer, E. (2018) Smart trailer: automatic generation of movie trailer using only subtitles, 2018 First International Workshop on Deep and Representation Learning (IWDRL) (2018) : 26–30. https://doi.org/10.1109/IWDRL.2018.8358211
Heylighen, F. (1993) The principle of incomplete knowledge. Principia Cybernetica. http://pespmc1.vub.ac.be/%5EINCOMKNO.html
Hodges, J. L., & Lehmann, E. L. (1963) Estimates of location based on rank tests, The Annals of Mathematical Statistics 34 (2): 598–611. https://doi.org/10.1214/aoms/1177704172
Hohman, F., Soni, S., Stewart, I., & Stasko, J. (2017) A viz of ice and fire: exploring entertainment video using color and dialogue, Proceedings of the 2nd Workshop on Visualization for the Digital Humanities (VIS4DH) at IEEE VIS. https://fredhohman.com/a-viz-of-ice-and-fire/
Hołobut, A., & Rybicki, J. (2020) The stylometry of film dialogue: pros and pitfalls, Digital Humanities Quarterly 14 (4). http://www.digitalhumanities.org/dhq/vol/14/4/000498/000498.html
Hołobut, A., Rybicki, J., & Wozniak, M. (2016) Stylometry on the silver screen: authorial and translatorial signals in film dialogue, in M. Eder & J. Rybicki (eds.) 11th Annual International Conference of the Alliance of Digital Humanities Organizations, DH 2016, Krakow, Poland, July 11-16, 2016, Conference Abstracts. Alliance of Digital Humanities Organizations (ADHO).
Hubert, M., & Vandervieren, E. (2008) An adjusted boxplot for skewed distributions, Computational Statistics & Data Analysis 52 (12): 5186–5201. https://doi.org/10.1016/j.csda.2007.11.008
Ibrahim, M. (2018) Lexus launches ad scripted entirely using artificial intelligence, Campaign. https://www.campaignlive.co.uk/article/lexus-launches-ad-scripted-entirely-using-artificial-intelligence/1499083
Isola, P., Zoran, D., Krishnan, D., & Adelson, E. H. (2015) Learning visual groups from co-occurrences in space and time, CoRR abs/1511.06811. http://arxiv.org/abs/1511.06811
Johnson, W. D., Beyl, R. A., Burton, J. H., Johnson, C. M., Romer, J. E., & Zhang, L. (2015) Use of Pearson’s chi-square for testing equality of percentile profiles across multiple populations, Open Journal of Statistics 5 (5): 412–420. https://doi.org/10.4236/ojs.2015.55043
Jolliffe, I. T., & Cadima, J. (2016) Principal component analysis: a review and recent developments, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2065): 20150202. https://doi.org/10.1098/rsta.2015.0202
Joshi, B., Stewart, K., & Shapiro, D. (2017) Bringing impressionism to life with neural style transfer in Come Swim, Proceedings of the ACM SIGGRAPH Digital Production Symposium (July 2017) : 1–5. https://doi.org/10.1145/3105692.3105697
Kader, G. D., & Perry, M. (2007) Variability for categorical variables, Journal of Statistics Education 15 (2): 4. https://doi.org/10.1080/10691898.2007.11889465
Kaufman, L., & Rousseeuw, P. J. (2009) Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: John Wiley & Sons.
Kearns, M., & Roth, A. (2020) The Ethical Algorithm: The Science of Socially Aware Algorithm Design. New York, NY: Oxford University Press.
Kerins, M. (2008) A statement on sound studies: (with apologies to Sergei Eisenstein, Vsevolod Pudovkin, and Grigori Alexandrov), Music, Sound, and the Moving Image 2 (2): 115–119. https://doi.org/10.3828/msmi.2.2.3
Kipp, M. (2014) ANVIL: the video annotation research tool, in The oxford handbook of corpus phonology. Oxford: Oxford University Press: 420–436.
Klevan, A. (2011) Description, in A. Clayton & A. Klevan (eds.) The Language and Style of Film Criticism. Abingdon: Routledge: 70–86.
Knöchelmann, M. (2019) Open science in the humanities, or: open humanities?, Publications 7 (4): 65. https://doi.org/10.3390/publications7040065
Koch, C. (2016) How the computer beat the Go master, Scientific American. https://www.scientificamerican.com/article/how-the-computer-beat-the-go-master/
Kohara, I., & Niimi, R. (2013) The shot length styles of Miyazaki, Oshii, and Hosoda: a quantitative analysis, Animation 8 (2): 163–184. https://doi.org/10.1177/1746847713487472
Konnikova, M. (2012) Humanities aren’t a science. Stop treating them like one. http://blogs.scientificamerican.com/literally-psyched/2012/08/10/humanities-arent-a-science-stop-treating-them-like-one/
Korzybski, A. (1994) Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics, 5th edn. Brooklyn, NY: Institute of General Semantics.
Kostyrka-Allchorne, K., Cooper, N. R., Gossmann, A. M., Barber, K. J., & Simpson, A. (2017) Differential effects of film on preschool children’s behaviour dependent on editing pace, Acta Paediatrica 106 (5): 831–836. https://doi.org/10.1111/apa.13770
Kristensen, R. G., & Claycomb, R. (2010) Introduction: writing against the curriculum, in R. G. Kristensen & R. Claycomb (eds.) Writing Against the Curriculum: Anti-disciplinarity in the Writing and Cultural Studies Classroom. Lanham, MD: Lexington Books: 1–18.
Kuhn, V., Arora, R., Craig, A., Franklin, K., Simeone, M., Bock, D., & Marini, L. (2012) Large scale video analytics: on-demand, iterative inquiry for moving image research, 2012 IEEE 8th International Conference on E-Science (2012) : 1–5. https://doi.org/10.1109/eScience.2012.6404446
Lammers, J., Crusius, J., & Gast, A. (2020) Correcting misperceptions of exponential coronavirus growth increases support for social distancing, Proceedings of the National Academy of Sciences 117 (28): 16264–16266. https://doi.org/10.1073/pnas.2006048117
Lang, A., Bolls, P., Potter, R. F., & Kawahara, K. (1999) The effects of production pacing and arousing content on the information processing of television messages, Journal of Broadcasting & Electronic Media 43 (4): 451–475. https://doi.org/10.1080/08838159909364504
Lang, A., Zhou, S., Schwartz, N., Bolls, P. D., & Potter, R. F. (2000) The effects of edits on arousal, attention, and memory for television messages: when an edit is an edit can an edit be too much?, Journal of Broadcasting & Electronic Media 44 (1): 94–109. https://doi.org/10.1207/s15506878jobem4401_7
Leake, M., Davis, A., Truong, A., & Agrawala, M. (2017) Computational video editing for dialogue-driven scenes, ACM Transactions on Graphics 36 (4): 1–14. https://doi.org/10.1145/3072959.3073653
Leavy, A. M. (2006) Using data comparison to support a focus on distribution: examining preservice teacher’s understandings of distribution when engaged in statistical inquiry, Statistics Education Research Journal 5 (2): 89–114.
Levy, M., & Tasoff, J. (2016) Exponential-growth bias and lifecycle consumption, Journal of the European Economic Association 14 (3): 545–583. https://doi.org/10.1111/jeea.12149
Li, Y., & Kuo, C. C. J. (2013) Video Content Analysis Using Multimodal Information: For Movie Content Extraction, Indexing and Representation. New York, NY: Springer.
Liu, C., Last, M., & Shmilovici, A. (2021) Towards automatic textual summarization of movies, in S. N. Shahbazova, J. Kacprzyk, V. E. Balas, & V. Kreinovich (eds.) Recent Developments and the New Direction in Soft-Computing Foundations and Applications: Selected Papers from the 7th World Conference on Soft Computing, May 29–31, 2018, Baku, Azerbaijan. Cham: Springer International Publishing: 481–491. https://doi.org/10.1007/978-3-030-47124-8_39
Ludwig, M., & Bertling, C. (2017) The effect of cutting rates on the liking of live sports broadcasts, International Journal of Sport Communication 10 (3): 359–370. https://doi.org/10.1123/ijsc.2017-0046
Machkovech, S. (2018) This wild, AI-generated film is the next step in “whole-movie puppetry”, Ars Technica. https://arstechnica.com/gaming/2018/06/this-wild-ai-generated-film-is-the-next-step-in-whole-movie-puppetry/
Makar, K., & Confrey, J. (2005) Variation talk: articulating meaning in statistics, Statistics Education Research Journal 4: 27–54.
Marsden, A. (2016) Music analysis by computer: ontology and epistemology, in D. Meredith (ed.) Computational Music Analysis. Cham: Springer: 3–28.
Masson, E. (2017) Humanistic data research: an encounter between epistemic traditions, in M. T. Schäfer & K. Van Es (eds.) The Datafied Society: Studying Culture through Data. Amsterdam: Amsterdam University Press: 25–37.
Matthews, P., & Glitre, K. (2021) Genre analysis of movies using a topic model of plot summaries, Journal of the Association for Information Science and Technology 72 (12): 1511–1527. https://doi.org/10.1002/asi.24525
May, C., & Shamir, L. (2019) A data science approach to movies and film director analysis, First Monday. https://doi.org/10.5210/fm.v24i6.9629
McGregor, S. L. T. (2015) Transdisciplinary knowledge creation, in P. Gibbs (ed.) Transdisciplinary Professional Learning and Practice. Cham: Springer International Publishing: 9–24.
McKee, Robert (1997) Story: Substance, Structure, Style and the Principles of Screenwriting. New York, NY: HarperCollins.
Menand, L. (2001) American Council of Learned Societies Occasional Paper No. 49: The Marketplace of Ideas. http://archives.acls.org/op/49_Marketplace_of_Ideas.htm
Menand, L. (2010) The Marketplace of Ideas. New York, NY: Norton.
Montfort, N. (2021) Exploratory Programming for the Arts and Humanities, 2nd edn. Cambridge, MA: The MIT Press.
Moors, J. J. A. (1988) A quantile alternative for kurtosis, The Statistician 37 (1): 25–32. https://doi.org/10.2307/2348376
Müller, M. (2015) Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Cham: Springer.
Murtagh, F., Ganz, A., & McKie, S. (2009) The structure of narrative: the case of film scripts, Pattern Recognition 42 (2): 302–312. https://doi.org/10.1016/j.patcog.2008.05.026
Murtagh, F., Ganz, A., McKie, S., Mothe, J., & Englmeier, K. (2010) Tag clouds for displaying semantics: the case of filmscripts, Information Visualization 9 (4): 253–262. https://doi.org/10.1057/ivs.2009.19
Newell, W. H. (2010) Undergraduate general education, in R. Frodeman, J. Thompson Klein, & C. Mitcham (eds.) The Oxford Handbook of Interdisciplinarity. Oxford: Oxford University Press: 360–371.
O’Brien, C. (2009) Sous les toits de Paris and transnational film style: an analysis of film editing statistics, Studies in French Cinema 9 (2): 111–125. https://doi.org/10.1386/sfc.9.2.111_1
Osborne, P. (2015) Problematizing disciplinarity, transdisciplinary problematics, Theory, Culture & Society 32 (5-6): 3–35. https://doi.org/10.1177/0263276415592245
Parker, J. (2002) A new disciplinarity: communities of knowledge, learning and practice, Teaching in Higher Education 7 (4): 373–386. https://doi.org/10.1080/135625102760553883
Pearlman, K. (2016) Cutting Rhythms: Intuitive Film Editing. New York, NY: Focal Press.
Pearlman, K. (2017) Editing and cognition beyond continuity, Projections 11 (2): 67–86. https://doi.org/10.3167/proj.2017.110205
Pearlman, K. (2019) On rhythm in film editing, in N. Carroll, L. T. Di Summa-Knoop, & S. Loht (eds.) The Palgrave Handbook of the Philosophy of Film and Motion Pictures. Cham: Palgrave Macmillan: 143–163.
Pernecky, T. (2020) An unintroduction to postdiscplinarity, in T. Pernecky (ed.) Postdisciplinary Knowledge. London: Routledge: 1–21.
Pernecky, T., Munar, A. M., & Wheeller, B. (2016) Existential postdisciplinarity: personal journeys into tourism, art, and freedom, Tourism Analysis 21 (4): 389–401. https://doi.org/10.3727/108354216X14600320851730
Plutino, A., Sarti, B., Simone, G., & Rizzi, A. (2021) Movie barcode as support for video analysis and film restoration, SCIRES-IT - SCIentific RESearch and Information Technology 11 (2). https://doi.org/10.2423/i22394303v11n2p33
Post, R. (2009) Debating disciplinarity, Critical Inquiry 35 (4): 749–770. https://doi.org/10.1086/599580
Prodromou, T. (2007) The coordination of distributional thinking, Proceedings of the 56th Session of the International Statistical Institute (2007).
Pustu-Iren, K., Sittel, J., Mauer, R., Bulgakowa, O., & Ewerth, R. (2020) Automated visual content analysis for film studies: current status and challenges, Digital Humanities Quarterly 14 (4). http://www.digitalhumanities.org/dhq/vol/14/4/000518/000518.html
Ramsay, S. (2012a) Programming with humanists: reflections on raising an army of hacker-scholars in the digital humanities, in B. D. Hirsch (ed.) Digital Humanities Pedagogy: Practices, Principles, and Politics. Cambridge: Open Book Publishers: 227–239.
Ramsay, S. (2012b) The digital humanities or a digital humanism, in Debates in the Digital Humanities. Minneapolis, MN: University of Minnesota Press: 429–437.
Redfern, N. (2007) Constructing movement in the cinema, New Review of Film and Television Studies 5 (2): 173–189. https://doi.org/10.1080/17400300701432860
Redfern, N. (2013a) Film studies and statistical literacy, Media Education Research Journal 4 (1): 58–73.
Redfern, N. (2013b) Film style and narration in Rashomon, Journal of Japanese and Korean Cinema 5 (1-2): 21–36. https://doi.org/10.1080/17564905.2013.10820070
Redfern, N. (2014a) Comparing the shot length distributions of motion pictures using dominance statistics, Empirical Studies of the Arts 32 (2): 257–273. https://doi.org/10.2190/EM.32.2.g
Redfern, N. (2014b) Robust Estimation of the mAR Index of High Grossing Films at the US Box Office, 1935 to 2005, Journal of Data Science 12 (2): 277–291. https://doi.org/10.6339/JDS.201404_12(2).0004
Redfern, N. (2014c) The structure of ITV news bulletins, International Journal of Communication 8: 1557–1578.
Redfern, N. (2015a) Exploratory data analysis and film form: the editing structure of Friday the Thirteenth (1980), Post Script: Essays in Film and the Humanities 34 (2-3): 71–83.
Redfern, N. (2015b) The time contour plot: graphical analysis of a film soundtrack. Zenodo. https://doi.org/10.5281/zenodo.6354341
Redfern, N. (2020a) Modelling shot lengths of Hollywood motion pictures with the Dagum distribution, Statistica 80 (1): 81–99. https://doi.org/10.6092/ISSN.1973-2201/9910
Redfern, N. (2020b) Quantitative analysis of sound in a short horror film, Humanities Bulletin 3 (2): 246–257.
Redfern, N. (2020c) Sound in horror film trailers, Music, Sound, and the Moving Image 14 (1): 47–71. https://doi.org/10.3828/msmi.2020.4
Redfern, N. (2021a) Colour palettes in US film trailers: a comparative analysis of movie barcode, Umanistica Digitale: 251–270. https://doi.org/10.6092/ISSN.2532-8816/12468
Redfern, N. (2021b) Early Hitchcock. (Version 1) [Data set] Zenodo. https://doi.org/10.5281/zenodo.4871227
Redfern, N. (2021c) The soundtrack of the Sinister trailer, Acta Universitatis Sapientiae, Film and Media Studies 20 (1): 36–51. https://doi.org/10.2478/ausfm-2021-0013
Redfern, N. (2022) Computational analysis of film audio. https://doi.org/10.5281/zenodo.6472560
Repko, A. F., Szostak, R., & Phillips Buchberger, M. (2019) Introduction to Interdisciplinary Studies. (3rd ed.) Los Angeles, CA: Sage.
Rodowick, D. N. (2008) Dr strange media, or how I learned to stop worrying and love film theory, in L. Grieveson & H. Wasson (eds.) Inventing Film Studies. Durham, NC: Duke University Press: 374–398.
Rodriguez, D. (2018) Introduction to audiovisual transcoding, editing, and color analysis with FFmpeg, Programming Historian 7. https://doi.org/10.46430/phen0077
Roggen, S. (2019) Cutting rates and shot scales in 1950s CinemaScope: a systematic style analysis, Screening the Past 44. http://www.screeningthepast.com/2019/03/cutting-rates-and-shot-scales-in-1950s-cinemascope-a-systematic-style-analysis
Ronfard, R., Gandhi, V., Boiron, L., & Murukutla, V. A. (2015) The prose storyboard language: A tool for annotating and directing movies. ArXiv:1508.07593 [Cs]. http://arxiv.org/abs/1508.07593
Rotem, O. (2003) The syntactic role of colour in film, Kinema: A Journal for Film and Audiovisual Media 19 (1): 5–26. https://doi.org/10.15353/kinema.vi.1050
Salt, B. (1974) Statistical style analysis of motion pictures, Film Quarterly 28 (1): 13–22. https://doi.org/10.2307/1211438
Salt, B. (1992) Film Style and Technology: History and Analysis. London: Starword.
Salt, B. (2006) Moving Into Pictures: More on Film History, Style, and Analysis. London: Starword.
Salt, B. (2011) Reaction time: how to edit movies, New Review of Film and Television Studies 9 (3): 341–357. https://doi.org/10.1080/17400309.2011.585865
Salway, A. (2007) A corpus-based analysis of audio description, in J. Díaz Cintas, P. Orero, & A. Remael (eds.) Media for All: Subtitling for the Deaf, Audio Description, and Sign Language. Amsterdam: Brill: 151–174.
Salway, A., Lehane, B., & O’Connor, N. E. (2007) Associating characters with events in films, Proceedings of the 6th ACM international conference on image and video retrieval - CIVR ’07 (2007) : 510–517. https://doi.org/10.1145/1282280.1282354
Salway, A., Vassiliou, A., & Ahmad, K. (2005) What happens in films?, 2005 IEEE International Conference on Multimedia and Expo (2005). https://doi.org/10.1109/ICME.2005.1521357
Savardi, M., Kovács, A. B., Signoroni, A., & Benini, S. (2021) CineScale: a dataset of cinematic shot scale in movies, Data in Brief 36: 107002. https://doi.org/10.1016/j.dib.2021.107002
Savardi, M., Signoroni, A., Migliorati, P., & Benini, S. (2018) Shot scale analysis in movies by convolutional neural networks, 2018 25th IEEE International Conference on Image Processing (ICIP) (2018) : 2620–2624. https://doi.org/10.1109/ICIP.2018.8451474
Sayer, A. (2000) For postdisciplinary studies: sociology and the curse of disciplinary parochialism and imperialism, in J. Eldridge, J. MacInnes, S. Scott, C. Warhurst, & A. Witz (eds.) For Sociology: Legacies and Prospects. Durham: Sociologypress: 83–91.
Sbravatti, V. (2019) Acoustic startles in horror films, Projections 13 (1): 45–66. https://doi.org/10.3167/proj.2019.130104
Schmidt, B. M. (2015) Plot arceology: a vector-space model of narrative structure, 2015 IEEE International Conference on Big Data (Big Data) (2015) : 1667–1672. https://doi.org/10.1109/BigData.2015.7363937
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis, Nature Methods 9 (7): 671–675. https://doi.org/10.1038/nmeth.2089
Schwandt, S. (2020) Introduction: digital humanities in practice, in S. Schwandt (ed.) Digital Methods in the Humanities. Challenges, Ideas, Perspectives. Bielefeld: Transcript: 7–22.
Scruton, R. (1997) The Aesthetics of Music. Oxford: Oxford University Press.
Silge, J., & Robinson, D. (2017) Text Mining with R: A Tidy Approach. Sebastopol, CA: O’Reilly Media, Inc.
Sittel, J. (2017) Digital humanities in der filmwissenschaft, MEDIENwissenschaft 4: 472–472.
Slingerland, E. (2008) What Science Offers the Humanities: Integrating Body and Culture. New York, NY: Cambridge University Press.
Smith, J. R., Joshi, D., Huet, B., Hsu, W., & Cota, J. (2017) Harnessing A.I. for augmenting creativity: application to movie trailer creation, Proceedings of the 25th ACM International Conference on Multimedia (October 2017) : 1799–1808. https://doi.org/10.1145/3123266.3127906
Smith, M. (2017) Film, Art, and the Third Culture: A Naturalized Aesthetics of Film. Oxford: Oxford University Press.
Spottiswoode, R. (1973) A Grammar of the Film: An Analysis of Film Technique. Berkeley, CA: University of California Press.
Staiger, J. (1985) Blueprints for feature films: Hollywood’s continuity scripts, in T. Balio (ed.) The American Film Industry, revised edition. Madison, WI: University of Wisconsin Press: 173–192.
Stam, R., Burgoyne, R., & Flitterman-Lewis, S. (1992) New Vocabularies in Film Semiotics: Structuralism, Post-Structuralism, and Beyond. London: Routledge.
Stember, M. (1991) Advancing the social sciences through the interdisciplinary enterprise, The Social Science Journal 28 (1): 1–14. https://doi.org/10.1016/0362-3319(91)90040-b
Sternberg, R. J. (2007) The importance of problem-driven research: bringing Wachtel’s argument into the present, Applied and Preventive Psychology 12 (1): 37–38. https://doi.org/10.1016/j.appsy.2007.07.011
Stutz, O. K. (2021) Comparative analysis of colour film style by computational means, Cinergie – Il Cinema e le altre Arti 20: 7–25. https://doi.org/10.6092/ISSN.2280-9481/13062
Svanera, M., Savardi, M., Signoroni, A., Kovács, A. B., & Benini, S. (2019) Who is the film’s director? Authorship recognition based on shot features, IEEE MultiMedia 26 (4): 43–54. https://doi.org/10.1109/mmul.2019.2940004
Thompson, K. (1999) Storytelling in the New Hollywood. Cambridge, MA: Harvard University Press.
Thompson, K. (2005) Herr Lubitsch Goes to Hollywood: German and American Film after World War I. Amsterdam: Amsterdam University Press.
Thompson Klein, J. (2004) Prospects for transdisciplinarity, Futures 36 (4): 515–526. https://doi.org/10.1016/j.futures.2003.10.007
Tsivian, Y. (2009) Cinemetrics, part of the humanities’ cyberinfrastructure, in M. Ross, M. Grauer, & B. Freisleben (eds.) Digital tools in media studies: Analysis and research. An overview. New Brunswick, NJ: Transcript-Verlag: 93–100.
Tufte, R., Edward (1983) The Visual Display of Quantitative Information. Chesire, CT: Graphics Press.
Vitali, V. (2005) Why study cinema? Serial visions of the culture industry and the future of Film Studies, Inter-Asia Cultural Studies 6 (2): 282–288. https://doi.org/10.1080/14649370500065995
Wang, Y., Liu, Z., & Huang, J.-C. (2000) Multimedia content analysis using both audio and visual clues, IEEE Signal Processing Magazine 17 (6): 12–36. https://doi.org/10.1109/79.888862
Weng, C.-Y., Chu, W.-T., & Wu, J.-L. (2009) RoleNet: movie analysis from the perspective of social networks, IEEE Transactions on Multimedia 11 (2): 256–271. https://doi.org/10.1109/tmm.2008.2009684
Westfall, P. H. (2014) Kurtosis as peakedness, 1905–2014. R.I.P., The American Statistician 68 (3): 191–195. https://doi.org/10.1080/00031305.2014.917055
Wickham, H. (2014) Tidy data, The Journal of Statistical Software 59 (10): 1–23. https://doi.org/10.18637/jss.v059.i10
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, 2nd edn. New York: Springer-Verlag.
Wickham, H., & Grolemund, G. (2017) R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. Sebastopol, CA: O’Reilly Media, Inc.
Wild, C. (2006) The concept of distribution, Statistics Education Research Journal 5 (2): 10–26.
Wilkinson, L. (2005) The Grammar of Graphics, 2nd edn. New York: Springer Science & Business Media.
Wilson, G. (2009) The world has problems while universities have disciplines: universities meeting the challenge of environment through interdisciplinary partnerships, Journal of the World Universities Forum 2 (2): 57–62.
Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., & Sloetjes, H. (2006) ELAN: a professional framework for multimodality research, Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06) (2006) : 1556–1559.
Yadav, A., & Vishwakarma, D. K. (2020) A unified framework of deep networks for genre classification using movie trailer, Applied Soft Computing 96: 106624. https://doi.org/10.1016/j.asoc.2020.106624
Yazdani, A., Skodras, E., Fakotakis, N., & Ebrahimi, T. (2013) Multimedia content analysis for emotional characterization of music video clips, EURASIP Journal on Image and Video Processing 2013 (1): 26. https://doi.org/10.1186/1687-5281-2013-26
Yi, Y., Wang, H., & Li, Q. (2020) Affective video content analysis with adaptive fusion recurrent network, IEEE Transactions on Multimedia 22 (9): 2454–2466. https://doi.org/10.1109/TMM.2019.2955300
Zerman, E., Rana, A., & Smolic, A. (2019) Colornet – estimating colorfulness in natural images, 2019 IEEE International Conference on Image Processing (ICIP) (2019) : 3791–3795. https://doi.org/10.1109/ICIP.2019.8803407
Zyl, M. van, & Botha, Y. (2016) Stylometry and characterisation in The Big Bang Theory, Literator 37 (2). https://doi.org/10.4102/lit.v37i2.1282
10.2 R Packages
Andri et mult. al., S. (2021) DescTools: Tools for Descriptive Statistics. https://cran.r-project.org/package=DescTools
Anikin, A. (2019) soundgen: an open-source tool for synthesizing nonverbal vocalizations, Behavior Research Methods 51 (2): 778–792. https://doi.org/10.3758/s13428-018-1095-7
Araya‐Salas, M., & Smith‐Vidaurre, G. (2017) warbleR: An R Package to Streamline Analysis of Animal Acoustic Signals, Methods in Ecology and Evolution 8 (2): 184–191. https://doi.org/10.1111/2041-210X.12624
Ardia, D., Bluteau, K., Borms, S., & Boudt, K. (2021) The R Package sentometrics to compute, aggregate, and predict with textual sentiment, Journal of Statistical Software 99 (2): 1–40. https://doi.org/10.18637/jss.v099.i02
Arnold, T. B. (2020) cleanNLP: A Tidy Data Model for Natural Language Processing. https://statsmaths.github.io/cleanNLP/
Arnold, T., & Tilton, L. (2016) coreNLP: Wrappers around Stanford CoreNLP Tools. https://CRAN.R-project.org/package=coreNLP
Barthelme, S. (2022) imager: Image Processing Library Based on CImg. https://CRAN.R-project.org/package=imager
Bengtsson, H. (2022) R.utils: Various Programming Utilities. https://CRAN.R-project.org/package=R.utils
Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018) quanteda: An R Package for the Quantitative Analysis of Textual Data, Journal of Open Source Software 3 (30): 774. https://doi.org/10.21105/joss.00774
Buonocore, T. (2019) Exploring chromatic storytelling in movies with R. https://towardsdatascience.com/exploringchromatic-storytelling-with-r-part-1-8e9ddf8d4187
de Vries, A., & Ripley, B. D. (2022) ggdendro: Create Dendrograms and Tree Diagrams Using ’ggplot2’. https://CRAN.R-project.org/package=ggdendro
Eder, M., Rybicki, J., & Kestemont, M. (2016) Stylometry with R: a package for computational text analysis, R Journal 8 (1): 107–121. https://journal.r-project.org/archive/2016/RJ-2016-007/index.html
Eder, M., Rybicki, J., Kestemont, M., & Pielstroem, S. (2020) Stylo: Stylometric multivariate analyses. https://github.com/computationalstylistics/stylo
Feinerer, I., Hornik, K., & Meyer, D. (2008) Text mining infrastructure in R, Journal of Statistical Software 25 (5): 1–54. https://www.jstatsoft.org/v25/i05/
Garnier, S. (2021) viridis: Colorblind-Friendly Color Maps for R. https://CRAN.R-project.org/package=viridis
Grün, B., & Hornik, K. (2011) topicmodels: an R Package for fitting topic models, Journal of Statistical Software 40 (13): 1–30. https://doi.org/10.18637/jss.v040.i13
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014) circlize implements and enhances circular visualization in R, Bioinformatics 30: 2811–2812.
Harrell, F. E., Jr. (2021) Hmisc: Harrell Miscellaneous. https://hbiostat.org/R/Hmisc/
Hausser, J., & Strimmer, K. (2021) entropy: Estimation of Entropy, Mutual Information and Related Quantities. https://CRAN.R-project.org/package=entropy
Hennig, C. (2020) fpc: Flexible Procedures for Clustering. https://www.unibo.it/sitoweb/christian.hennig/en/
Hester, J., Henry, L., Müller, K., Ushey, K., Wickham, H., & Chang, W. (2022) withr: Run Code ’With’ Temporarily Modified Global State. https://CRAN.R-project.org/package=withr
Jockers, M. (2020) syuzhet: Extracts Sentiment and Sentiment-Derived Plot Arcs from Text. https://github.com/mjockers/syuzhet
Kassambara, A. (2020) ggpubr: ggplot2 Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/
Kassambara, A., & Mundt, F. (2020) factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://CRAN.R-project.org/package=factoextra
Keck, F. (2019) subtools: Read and Manipulate Video Subtitles.
Kolde, R. (2019) pheatmap: Pretty Heatmaps. https://CRAN.R-project.org/package=pheatmap
Lê, S., Josse, J., & Husson, F. (2008) FactoMineR: A package for multivariate analysis, Journal of Statistical Software 25 (1): 1–18. https://doi.org/10.18637/jss.v025.i01
Ligges, U. (2021) tuneR: Analysis of Music and Speech. https://CRAN.R-project.org/package=tuneR
Müller, K. (2020) here: A Simpler Way to Find Your Files. https://CRAN.R-project.org/package=here
Nicholls, K. (2021) srt: Read Subtitle Files as Tabular Data. https://CRAN.R-project.org/package=srt
Ooms, J. (2022) av: Working with Audio and Video in R. https://CRAN.R-project.org/package=av
Pedersen, T. L., Nicolae, B., & François, R. (2021) farver: High Performance Colour Space Manipulation. https://CRAN.R-project.org/package=farver
Proellochs, N., & Feuerriegel, S. (2021) SentimentAnalysis: Dictionary-Based Sentiment Analysis. https://CRAN.R-project.org/package=SentimentAnalysis
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rinker, T. (2021) sentimentr: Calculate Text Polarity Sentiment. https://github.com/trinker/sentimentr
Rinker, T. W. (2018a) lexicon: Lexicon Data. http://github.com/trinker/lexicon
Rinker, T. W. (2018b) textclean: Text Cleaning Tools. https://github.com/trinker/textclean
Rinker, T., & Kurkiewicz, D. (2019) pacman: Package Management Tool. https://github.com/trinker/pacman
Robette, N. (2022) GDAtools: A Toolbox for Geometric Data Analysis and More. https://CRAN.R-project.org/package=GDAtools
Roehrick, K. (2020) vader: Valence Aware Dictionary and sEntiment Reasoner (VADER). https://CRAN.R-project.org/package=vader
Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., & Despouy, P. (2021) plotly: Create Interactive Web Graphics via plotly.js. https://CRAN.R-project.org/package=plotly
Silge, J., & Robinson, D. (2016) tidytext: text mining and analysis using tidy data principles in R, Journal of Open Source Software 1 (3). https://doi.org/10.21105/joss.00037
Slowikowski, K. (2021) ggrepel: Automatically Position Non-Overlapping Text Labels with ggplot2. https://CRAN.R-project.org/package=ggrepel
Spedicato, G. A. (2017) Discrete time Markov chains with R, The R Journal. https://journal.r-project.org/archive/2017/RJ-2017-036/index.html
Sueur, J., Aubin, T., & Simonis, C. (2022) seewave: Sound Analysis and Synthesis. https://rug.mnhn.fr/seewave/
Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M., & Maechler, M. (2021) robustbase: Basic Robust Statistics. https://robustbase.R-forge.R-project.org/
Wickham, H. (2019) stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019) Welcome to the tidyverse, Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Hester, J., Chang, W., & Bryan, J. (2021) devtools: Tools to Make Developing R Packages Easier. https://CRAN.R-project.org/package=devtools
Wickham, H., & Seidel, D. (2020) scales: Scale Functions for Visualization. https://CRAN.R-project.org/package=scales
Wilke, C. O. (2021) ggridges: Ridgeline Plots in ggplot2. https://wilkelab.org/ggridges/
Wilkins, D. (2021) treemapify: Draw Treemaps in ggplot2. https://wilkox.org/treemapify/